Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation.
نویسندگان
چکیده
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in gamma-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
منابع مشابه
Morphine disrupts long-range synchrony of gamma oscillations in hippocampal slices.
Oscillations in neuronal population activity within the gamma frequency band (>25 Hz) have been correlated with cognition: Gamma oscillations could bind together features of a sensory stimulus by generating synchrony between discrete cortical areas [Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H. J. (1989) Biol. Cybern. 60, 121-130; Singer, W. & Gray, C. M. (...
متن کاملA model of atropine-resistant theta oscillations in rat hippocampal area CA1.
Theta frequency oscillations are a predominant feature of rhythmic activity in the hippocampus. We demonstrate that hippocampal area CA1 generates atropine-resistant theta population oscillations in response to metabotropic glutamate receptor activation under conditions of reduced AMPA receptor activation. This activity occurred in the absence of inputs from area CA3 and extra-ammonic areas. Fi...
متن کاملMetabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons.
Group I metabotropic glutamate receptors (mGluRIs) can be colocalized with ionotropic glutamate receptors in postsynaptic membranes. We have investigated whether mGluRIs alter the gene transcription induced by N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptors in rat neocortical gamma-aminobutyric acid (GABA) interneurons. In cultures of...
متن کاملT‐type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular‐spiking oriens‐alveus interneurons
KEY POINTS Regular-spiking interneurons in the hippocampal stratum oriens exhibit a form of long-term potentiation of excitatory transmission that is independent of NMDA receptors but requires co-activation of Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. We show that T-type Ca2+ channels are present in such interneurons. Blockade of T-type currents prevents the i...
متن کاملDiffering mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons.
We have explored the ability of axons from spinal and hippocampal neurons to aggregate NMDA- and AMPA-type glutamate receptors on each other as a way of exploring the molecular differences between their presynaptic elements. Spinal axons, which normally cluster only AMPA-type glutamate receptors on other spinal neurons, cluster both AMPA- and NMDA-type glutamate receptors on the dendritic shaft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2001